The realization space is [1 1 0 0 1 1 0 -x1 -x1 -x1^2 + x1 -x1^2 + x1] [1 0 1 0 1 0 1 -1 -1 1 x1^2 - x1 + 1] [0 0 0 1 1 1 x1^2 x1^3 - x1^2 -x1^2 -x1^3 + x1^2 x1^4 - 2*x1^3 + x1^2] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (-x1^12 + 4*x1^11 - 7*x1^10 + 7*x1^9 - 5*x1^8 + 3*x1^7 - x1^6) avoiding the zero loci of the polynomials RingElem[x1, x1^3 - x1 + 1, x1^2 - x1 + 1, x1 - 1, 2*x1^2 - 2*x1 + 1, x1^4 - 2*x1^3 + x1 - 1, x1^3 - x1^2 + 1, x1^3 - 2*x1^2 + x1 - 1, x1 + 1, x1^2 + 1]